
A Sparse Bayesian Tool for Automatic System Identification

Samuel Martin Frias1

Supervisors: Guy-B. Stan, Zoltan A. Tuza

Abstract— The process of nonlinear system identification is
and has always been extremely relevant in the fields of engi-
neering and biology. Over the last few years Neural Networks
(NN) have been leading the way to extract models. However,
we may find ourselves in a situation where acquiring data is
expensive or complicated, making it harder to train a Network;
a commonplace situation in biology. Additionally, we may find
relevant to extract a human understandable model, such as an
ODE system, that can be further analysed and fully describes
the system dynamics. The focus of this project is to create a tool
to aid, or fully automate, the identification of system dynamics
in noisy environments and with a restricted amount of data.
As such, we propose a two step process for the task. First
novel way of estimating derivatives of data through Gaussian
Processes. Second the use of Sparse Bayesian Learning as a
feature selection algorithm for finding sparse representations of
our estimated derivatives from a dictionary of nonlinearities.
The results are finally displayed back to the user in ODE form,
making it simpler for the study of system properties such as
stability or non-negativity and providing an explainable output.

I. INTRODUCTION

The process of nonlinear system identification is becoming
ever more relevant with the raise of Machine Learning and
the push for automation [1]. Over the last few years Neural
Networks (NN) have been leading the way in the way we
make sense of new data; from financial fraud detection in
the stock market to movie recommendations these algorithms
are omnipresent in our day to day. These black-box methods
allow us to make reliable predictions and they have shown
outstanding results in previously unimaginable tasks like
generating human-like speech [2] or accurate image classi-
fication [3]. However, training Neural Networks can be data
expensive and while it is not strictly necessary in many fields,
there exists real value in the explainability of the models
that have been inferred from data. The ability to dissect and
predict the model’s behaviour becomes especially relevant
in fields where an unpredicted behaviour of said model can
have major negative consequences. An explainable model
can generate trust in users [4], allows for easier debugging
and improvement, makes it easier to add prior information
and even creates the possibility of gaining new insights [5]–
[7]. Thus, with an understandable model, the human user can
for instance understand failure modes, stability conditions
and extract relevant insights that might be hidden in a black-
box model. The aim of this project is a system identification
tool for ODE systems. The tools takes as input the observed
states of an unknown system and requires a dictionary of

1Samuel Martin Frias, Bioengineering Department, Imperial College
London, London, SW7 2AZ (email: sm5616@ic.ac.uk)

nonlinearities that can be tuned by the user to find the model
dynamics. The problem then can be formulated as

y = Φw + ε, (1)

where Φ ∈ Rn×m is the dictionary of features used to
estimate y ∈ Rn the observed signal. w ∈ Rm is a
vector of unknown weights that we wish to find, that will
select the sparsest realisation of the dictionary of features
that describes the observed data. Finally the noise ε ∈ Rn
which is modelled as zero mean additive Gaussian noise
ε v N (ε|0, λ) ∈ Rn with variance vector λ.

However, it is possible find ourselves in a situation where
the number of dictionary entries might be greater than the
length of the data provided m > n and as such rendering
the problem ill-poised. To tackle this problem we make
the assumption that the actual model describing y is best
described by a small number of entries from the dictionary,
in which case w is sparse. The motivations behind the
inclusion of sparsity are two-fold. First, from compressed
sensing we know it can help solve what in principle looks
like an underdetermined problem, where there are more
dictionary entries than data available for its assessment
[8], [9]. Second, Sparse Bayesian Learning (SBL) [10], the
regression method selected for this project, also embodies
a mathematical Ockham’s razor ([11] chap 28). SBL will
select the simplest realisation of the dictionary that fits the
data, reducing the possibility of over-fit and maximising
the prediction capabilities of the model. Finally, SBL is
flexible enough to allow for the addition of constraints in
the regression which can later be used to enforce different
qualities in the model, like stability or non-negativity, which
could reduce search-space to only physically meaningful
models [12].

Another problem arises when we wish to estimate the
dynamics of the system. Most of the time we will not have
direct access to the derivative of the data and it should be
inferred or estimated. Furthermore, any noise present in the
observations of the system is then substantially increased by
the differentiation process and as such can render the task
of inferring the model almost impossible. Previous work in
the field fails to address or sometimes even mention this
problem. Simulations are often run at very low noise levels
or no noise at all, which is not a realistic representation of
real-life data. Here we present a novel way of estimating
derivatives through the use of Gaussian Processes. Ideally
we can construct a non-parametric model through Gaussian
Processes that expresses observed features like periodicity
or smoothness. This Gaussian Process is then fit to the data

by performing some type of regression. Finally, once the
estimated mean and covariance functions are founds we can
take the derivative and use that as an alternative to raw data
or other common approaches like spines or polynomial fit.

II. METHODS

The aim of this project is estimating a system of differ-
ential equations from their observable states. Assuming each
observed state y can be differentiated to find ẏ, the problem
at equation (1) becomes

ẏ = Φ(y)w + ε, (2)

where the dictionary of features Φ is evaluated at the
observed states y. While the problem of feature selection
for uncovering differential equations has been previously
explored [13], [14], no optimal solution has been found for
the estimation of the states and their derivatives from data.
Even if the derivative of the system is directly observable, the
problem of fitting the noisy data to find the original signal
still holds. Furthermore, this problem can be amplified when
the derivative must be found by the numerical differentiation
of the noisy observed states, a process in which noise can
fully drown the desired signal.

A. Data modelling with Gaussian Processes

In real-world applications, the data being fed into the
tool will most likely be corrupted with noise and some
preprocessing should be in place. Parametric models such
as splines and polynomials are useful as they can have
outstanding results with little to no tweaking and are in
fact implemented as an option in the final version of the
tool. However, even having a shallow knowledge of the
system, the user might still know if said system is expected
to be smooth, continuous or periodic and the data-fit can
be improved when these macro-trends are well captured.
Previous work has shown the benefits of nonparametric
models such as Gaussian Processes [15], [16]. These are
attractive alternatives for their expressivity and the use of
marginal likelihood [17] to compare models and assess
their fit. Gaussian processes are modelled with kernels that
describe their covariance function, the most basic example
is the Square Exponential kernel (SE)

k(yi,yj) = σ2exp(− (yi − yj)
2

2η2
), ∀i, j = 1, 2, ..., n (3)

where k(yi,yj) is the entry Ki,j of the covariance matrix
K and σ, η are parameters used to fit the data. Their
flexibility in data modelling allows for expressing different
characteristics of a signal, such as smoothness or periodicity,
through the selection and combination of kernels. They also
allow for both interpolation and extrapolation while at the
same time providing an estimate of the covariance at each
point of the signal, effectively providing a (biased) confi-
dence interval for our estimations. Finally, we can compare
several models by their marginal likelihood [11] allowing
for the implementation of automatic kernel selection. To fit
a Gaussian Process, one kernel or combinations of them are

Fig. 1: How kernels can express structure, figure from David
Duvenaud’s thesis [16]

selected and the parameters are fit using a Gaussian Process
Regressor. In this project an algorithm described in [18]
chapter 4 is being used, which was implemented through
the Scikit-learn library (See appendix for library version
and system specification). If the user is knowledgeable on
Gaussian Processes, the kernels can be manually selected;
alternatively, a pool of kernels can be chosen, fitted to the
data and then compared as previously described through their
marginal likelihood. Finally, the noise is modelled through
a White Noise kernel that is added to the original kernel(s)
to model and estiamte the noise variance level, which will
help make better estimations when using feature selection
algorithms.

B. Using GPs for derivative estimation

If the multivariate random variable y ∈ Rn is sampled
from a Gaussian Process with mean µ ∈ Rn and covariance
K ∈ Rn×n

y v N (µ,K) (4)

then the distribution of y′ = Ay, where A ∈ Rn×n is a linear
transformation matrix, with Gaussian noise ε N (0, λI) will
be another Gaussian Process [18] [15]:

y′ v N (Aµ,AKAT + λI) (5)

As such, if we model our data through Gaussian Process,
then the derivative of the data can be estimated with its
corresponding covariance function [19]. To calculate the
numerical derivative, the gradient of the mean is computed
using second order accurate central differences.

C. Sparse Bayesian Learning

Once the estimation of both the derivative ẏest and vari-
ance λest are found, these will be used to find the equations
that govern the dynamics of the system. We will be using y
on the following derivations to represent a generic function
that we wish to estimate. For our purposes y = ẏest as it is
the best data available to find dynamics of the system. For
simplicity in the derivations we will stick to using y instead
of ẏest and similarly will will be used λ to refer to λest.

Several feature selection processes have been developed over
the years and which to choose has become a hot-topic in
the Machine Learning community. Luckily the necessities
(and assumptions) of this project reduce the search-space
significantly to sparse regression methods for the reasons
stated in the introduction. In [12] D.Wipf and S.Nagarajan
make an outstanding contribution by comparing several `1
and `2 sparsity enhancing feature selection methods. The
best results in terms of sparsity and precision were achieved
through Sparse Bayesian Learning (SBL) algorithm [10]. The
algorithm assumes a Gaussian likelihood function p(w|y) =
N (y; Φw, λI) and focuses in the selection of w for the
maximisation of the probability of y. The basic prior used in
SBL is p(w; γ) = N (w; 0, diag[γ]). As it can be observed
γ is a vector that governs the variance of each of the weight;
it is estimated from data by marginalising over the weights
and then performing type-II maximum likelihood [20] [17]
[21], which is equivalent to maximizing

L(γ) = −log
∫
p(y|w)p(x; γ)dw (6)

= −logp(y; γ) (7)

≡ log|Σy|+ yTΣ−1y y (8)

where Σy , λI+ Φdiag[γ]ΦT . The objective then becomes
to obtain the optimal γ∗ that minimizes equation (6) and then
setting

wSBL = E(w|y; γ∗) = diag[γ∗]Φ
TΣ−1y y (9)

However, equation (6) is often intractable, thus we follow
the method suggested by D.Wipf et al. [20] that proposes
a reformulation of the optimization by solving a series of
reweighted `1 problems. This approach, while it slightly
under-performs compared `2−SBL [12], its separable form
makes it suitable for the addition of further constraints like
non-negativity of wSBL that might be of future interest
as will be explored in the discussion. The problem of
minimizing (6) is relaxed by an upper bound

L(γ, z) , zT γ − g∗(z) + yTΣ−1y y ≥ L(γ) (10)

the tightest bound of which is obtained by minimizing over
z. The optimal value zk+1 = diag[ΦTΣ−1y Φ], is the slope of
−log|Σ−1y | at γk. In the implemented algorithm, we initialize
zk=0
i = 1, i = 1, 2, ..., n and then iteratively solving:

γk → argmin
γ
Lz , (zk)T γk + yTΣ−1y y (11)

To solve (11) another upper bounding auxiliary function
is used; at iteration k the auxiliary function

Lz(γ,w) ,
∑
i

(ziγi +
w2
i

γi
) +

1

Λ
||y − Φw||22 ≥ Lz (12)

is solved, which is equivalent to solving the least absolute
shrinkage and selector operator (Lasso) equivalent problem

w∗ = argmin
w
||y − Φw||22 + 2Λ

∑
i

z
1/2
i |wi| (13)

and then setting γk+1
i = z

−1/2
i |wi|, which will be the global

minimum of (11), which can in turn be iteratively solved to
minimize the original function (6). For all the results later
shown, the problem is solved using a second order conic
solver for 100 iterations.

D. Dictionary selection

Now that both derivative estimation and feature selection
process are in place, the only task missing is to create a
dictionary of equations to be used in the SBL process and
that can capture the dynamics of the system. It is here
where the user’s prior knowledge can help generate much
better insights in reduced time, especially when compared
to other ”brute force” methods that search on the whole of
mathematical space [7]. The current implementation expects
the user to manually input or tweak the type of equations
that should be explored, it uses symbolic python to make
this input as intuitive as possible; for instance a valid input
would be: [“1”, “x”, ”y”, “z”, “1/x”, “1/y”, “x ∗ z”]. The
dictionary is then evaluated at the sates estimated by the
Gaussian Process fit or spline, then `2 normalized to ensure
all entries are penalised evenly [22].

E. Final Output

Once the data is processed, the output of the tool is human
comprehensible. The program will also allow the user to
provide a threshold, entries below which will be rendered
zero (instead of the output of the SBL algorithm, which
would be an extremely small, but non-zero quantity). After
which the output for the estimated ODE model is presented
to the user in equation form, again using symbolic python.

III. RESULTS

We seek to estimate an unknown model in the form:

Ẏ = f(Y, θ) (14)

where Y ∈ Rn×p, for n number of data points and p
observable states of the ODE system and θ are coefficients or
inputs to the system. Before entering more complex system
dynamics and over-complete dictionaries, we begin with
some synthetic examples with different levels of noise to
show the robustness of the system.

A. Discovering Lotka-Volterra systems

A simple yet common example in both biology and
ecology are the rhythmical fluctuations that arise in prey-
predator interactions or in some biochemical systems [23]
[24]. They describe the oscillations often observed in the
population of predators and preys, where in an isolated
environment, the increase of the prey leads to an increase in
predators, generating a drop in the prey population, which
pushes the predator population down re-starting the cycle.
This ordinary differential equation system

dx

dt
= αx− βxy (15)

dy

dt
= δxy − νy (16)

SNR MSE `0 SNR MSE `0
GP 5 0.38 1 8 0.165 0
Spline 5 18.9 4 8 9.5 2

SNR MSE `0 SNR MSE `0
GP 10 0.99 0 13 0.05 0
Spline 10 5.99 1 13 3.01 0

TABLE I: Comparison of Spline and Gaussian Process in
the approximation of the numerical derivative of the data
provided. MSE represents the Means Square Error when
compared to the analytical derivative and `0 represents the
number of extra terms added to the system when compared
to the original model.

called Lotka-Volterra system models such behaviour, where
the parameters to be estimated are (α, β, δ, ν) and the ob-
servable states x, y. To generate these states the equations
are integrated and white Gaussian noise is added to test
the system’s robustness. The dictionary entries being used
for this example include all combinations of linear, first and
second order terms of the observable states. The data being
fed into the algorithm is a realisation n=300 data points
long over a time span (t ∈ [0, 30]); effectively a sampling
frequency of 10Hz, a realistic sampling rate in many fields.
The Table I compares the derivative estimation error from
the spline and Gaussian Processes and the numbers of extra
terms at each noise level (represented with `0 as the zero-
norm penalty for extra terms). The shown noise levels in
the table represent those at which there where changes in
the number of incorrect terms added to the equations (e.g.
the number of wrong additional entries is reduced from
4 to 2). The noise is measured by the Signal to Noise
Ratio (SNR) defined in more depth in the appendix. It is
also worth mentioning that at all noise levels tested for
this example (SNR ∈ [5, 50]), the real terms where always
present, although the coefficient values widely varied in
the noisier realizations where other terms were mistakenly
present.

B. Discovering Rössler equations

The Rössler Equations were introduced in 1976 by Otto
Rössler as an alternative to the Lorenz attractor for modelling
chaos [25]. This system is described by

dx

dt
= −y − z (17)

dy

dt
= x+ αy (18)

dz

dt
= β + z(x− δ) (19)

and it was chosen for its abrupt changes in the state z,
which make it more challenging for our system to optimally
estimate the parameters. For this example, the dictionary
was set to all possible combinations of the observable states
up to of third order or less (e.g. x2z). This proved a
relevant example to show the difference in noise tolerance for
different systems. Chaotic attractors with aburpt changes in
the observable states such as this one prove more challenging

Fig. 2: Original vs estimate of the Lotka-Volterra system
for α = 2/3, β = 4/3, δ = 2, γ = 1. The estimated
system was reconstructed from noisy observations (SNR =
8dB) of Gaussian additive noise, time span t ∈ [0, 30] and
a sampling rate of 10Hz. In this example the derivative
estimation through Gaussian Processes with the selected
kernel (Rational Quadratic + White noise Kernel) took 2.49s
and the subsequent structure estimation took 2.26s. (The
system and libraries used to obtain these results are described
in the appendix)

for our implementation, having to raise the SNR to 20dB
before converging to the right solution. Similarly to the
results shown in [7] were this process was also studied, our
system converges to a ”regularized” version of the system at
higher noise levels. The term most commonly dropped was
the b parameter, which even when correctly identified still
had the highest error in its estimated value.

C. Testing the accuracy of Sparse Bayesian Learning

To exemplify how useful and robust the Sparse Bayesian
Learning algorithm can be, a test was created to show the
accuracy and the importance of sparsity in the results. The
test used for the assessment of the algorithm is based on
the Taylor Series expansion of sin(x). This function can be
approximated with a high order polynomial

sin(x) ≈ x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− ... (20)

In this case the algorithm is provided with a dictionary of
different order polynomials and is given a sine function to
model, therefore it is expected to find the coefficients for the
sin(x) Taylor expansion. The aim is to observe whether the
algorithm is able discern the almost negligible contribution
of higher order non-zero terms from those higher-order real
zero terms. The Dictionary provided

Φ = {1, x, x
2

2!
,
x3

3!
,
x4

4!
,
x5

5!
, ...,

x20

20!
} (21)

where 1 is a vector of ones of equal length to the rest of
dictionary entries. The ideal output of the algorithm should
be a vector selecting the non-zero entries with an absolute
value of one and setting all the other values to zero. Given

Fig. 3: Original vs estimate of the Rössler system for
α = 0.2, β = 1.2, δ = 12. The estimated system was
reconstructed from noisy observations (SNR = 20dB)
of Gaussian additive noise, time span t ∈ [0, 100] and
a sampling rate of 10Hz. In this example the derivative
estimation through Gaussian Processes with the selected
kernel (Matern + White noise Kernel) took 17.02s and the
subsequent structure estimation took 59.26s.

Fig. 4: Test for the accuracy of SBL: finding the Taylor
expansion coefficients for sin(x)

the numerical limitations of discrete systems, it would be
impossible to have such a result. However, the ability to
discern between zero and non-zero terms remains relevant
and the results can be observed in figure 4.

It is clear that the algorithm was able to discern between
the zero and non-zero terms, where the smallest difference
between a zero and non-zero entry is of 18 orders of
magnitude, which could probably be improved with a finer
tuning of the solver. To make the problem harder and show
the power of compressive sensing and sparsity [26] [9] only
n=10 data points where provided; smaller than the number
of entries in the dictionary (n ≤ m), a traditionally ill-posed
problem that is shown to converge to the right solution.

D. Gaussian processes and splines: differentiation accuracy

Finally we want to compare the improvements in differ-
entiation accuracy using Gaussian Processes for data fitting
when compared to spline fitting, one of the most commonly
used fitting and interpolation methods. Although some initial

Fig. 5: Mean Square Error in the derivative estimation of
the first observable state of the Lorenz attractor for different
levels of noise

results where shown in I, a more in depth example could
show the benefits of Gaussian Processes. In this case we are
using the Lorenz attractor [27] used to describe meteorologi-
cal phenomena; another chaotic system similar to the Rössler
equations and described by

dx

dt
= ν(y − x) (22)

dy

dt
= x(ρ− z)− y (23)

dz

dt
= xy − βz (24)

to test for the accuracy in the estimations of derivatives.
For the selected parameters (ν = 10, β = 8/3, ρ = 28)
and observable states (x, y, z) the system was integrated in
the time span t ∈ [0, 10] using n = 300 data points. The
accuracy in the derivative was measured by comparing the
Gaussian Process and Spline estimates of the first observable
state (dxdt) against the analytical derivative for different levels
of additive Gaussian Noise. The results are summarized in
figure (5) which plots the Mean Square Error in estimation in
logarithmic scale. While at higher noise levels both methods
show similar results, when the noise level is lowered, the
prediction and modelling capabilities of Gaussian Processed
show improved results. The abrupt jumps in the accuracy
of Gaussian Processes corresponds to the failure/success of
the regressor to correctly model the noise and incorrectly
overfitting the measurements. However, when the model
correctly models the underlying system, the accuracy of the
derivative shows an improvement often in the range of 1-2
orders of magnitude when compared to the Spline fit. For
this simulation the Rational Quadratic kernel was selected
with an added White Noise kernel to model the noise.
This example expects to show the simplest implementation
possible of Gaussian Process fitting, where only one kernel
is selected to show the structure of the system and no check
is done in the Log-likelihood function to see whether the
Gaussian Process Regressor is overfitting. As such, we show
the benefits that can be obtained from this approach even
with a low effort implementation and no prior knowledge of
the underlying system.

IV. DISCUSSION

Finding mathematical models that describe experimental
data can be a hard and time-expensive task if done manually
and our hopes is to shorten the time required. Our tools
shows promising results under the assumption that all state
variables are measured and improves on similar implemen-
tation by using a more accurate method of derivative esti-
mation. When compared to other tools, our implementation
greatly benefits from the reduced computing complexity
of a reduced sample space from which to derive models.
Alternatives like Markov Chain Monte Carlo for the parsing
of mathematical space and symbolic regression methods can
have outstanding results for completely unknown systems,
but at the same time the unbounded nature of this methods
results in convergence to models that may not be relevant for
the purposes of the user. Furthermore, this methods usually
take hours of computation in most systems which could be
detrimental in situations where the next experiment depends
on the results derived from the tool. For most common use
cases our tool converges in seconds or minutes, even in
underdetermined systems such as the one shown in figure
4.

A. Future improvements

No project is ever finished and this is no exception. While
the results suggest both noise robustness and sparsity in the
results, there are still several direction to be explored further
for this project.
In biological systems many dynamics are described by
fractional functions that are currently hard to model with
our implementation. A toggle-switch [28] is a biochemical
system commonly described as

dA

dt
=

β

1 + (B/δ)n
− νA (25)

dB

dt
=

β

1 + (A/δ)n
− νB (26)

where β, δ, ν are parameters to be estimated. For the
current implementation of the tool to converge to the correct
solution, the dictionary should have specifically the entry

β
1+(B/δ)n in the dictionary as it currently lacks a way of
optimizing over a parameter such as δ in equation 25. To
improve this a solution such as the one proposed in [29]
could be used, where the problem 2 can be rearranged into:

Ẏ = f(Y, θ) =
fN (Y, θ)

fD(Y, θ)
→ fN (Y, θ)− fD(Y, θ)Ẏ = 0

(27)
With this rearrangement the problem is again suitable for
sparse regression algorithms such as SBL, meaning that
parameters as K can be estimated through regression and not
additional dictionary entries. Second, further work could be
done in numerical derivative estimation by comparing some
of the methods described in [30]. Some of these could poten-
tially provide better results than the current implementation
which uses second order central differences in the numerical
differentiation of Gaussian Processes. Additionally, for those

kernels that allow it, the analytical derivative of the Gaussian
Process could be used, which could in theory provide the
highest accuracy instead of the numerical estimations. Fi-
nally, the exploration of further constraints in the regression
could also be of potential interest. For instance, ensuring non-
negativity in the observed states or stability of the estimated
system could also help reduce the possible solutions to those
physically relevant.

V. CONCLUSION

Finding close-form mathematical models from experimen-
tal data is one of the oldest and most relevant endeavours
in the scientific community and for the most part these
equations have been derived from first principles. Recently,
the abundance of data and increased computing power has
allowed for the field of data-driven modelling. In the fields
where the first principle derivations might be intractable [13]
like in some dynamical networks, biochemistry or neuro-
science, useful insights might be hidden in data that could
help the user uncover new relationships previously unknown.
Furthermore, in fields like biology and biochemistry where
the possible interactions are countless and the underlying
system is incredibly complex, it might be difficult to use
first principles and the data is often corrupted with high
levels of noise. In this situations the use of automatic system
identification tools with more precise derivative estimations
can have a powerful impact in productivity. The tool could
allow the user to parse through thousands of possible models
in a matter of seconds or minutes while still making use of
the user’s knowledge of the underlying system to converge
to the right solution.

VI. ACKNOWLEDGEMENTS

This work would not be feasible without the tutelage and
guidance of Prof. Guy B. Stan and Dr. Zoltan A. Tuza,
both of which have provided a combination of guidance
and freedom that are rarely found in an undergraduate level
project and I am deeply grateful for the trust and time they
kindly deposited in me. The weekly meetings with Dr. Tuza
evolved from short debriefs on the state of the project to an
enriching bouncing off ideas and advice that helped me get
this project way beyond anything I could have even have
thought off on my own. Second, I want to thank my friend
Alex Bosman who worked on a related project, with whom
I shared moments of stress and joy during this project and
who has helped me several times when I was probably to
deep in my own problem to see the solution. Finally a big
thanks to my parents, both of which probably tired to hear me
ramble on about modelling and yet still asked me everyday
with genuine interest how the project was going, I love you
both.

REFERENCES

[1] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016,
iD: TN-ieee-s7352306.

[2] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” arXiv:1609.03499 cs],
2016, 14. [Online]. Available: http://arxiv.org/abs/1609.03499

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the
ACM, vol. 60, no. 6, pp. 84–90, May 2017. [Online]. Available:
https://dl.acm.org/doi/10.1145/3065386

[4] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey
on explainable artificial intelligence (xai),” IEEE Access, vol. 6, pp.
52 138–52 160, 2018.

[5] M. Schmidt and H. Lipson, “Distilling Free-Form Natural Laws from
Experimental Data,” Science, vol. 324, no. 5923, pp. 81–85, Apr.
2009. [Online]. Available: https://www.sciencemag.org/lookup/doi/10.
1126/science.1165893

[6] B. C. Daniels and I. Nemenman, “Automated adaptive inference
of phenomenological dynamical models,” Nature Communications,
vol. 6, no. 1, p. 8133, Nov. 2015. [Online]. Available: http:
//www.nature.com/articles/ncomms9133

[7] R. Guimerà, I. Reichardt, A. Aguilar-Mogas, F. A. Massucci, M. Mi-
randa, J. Pallarès, and M. Sales-Pardo, “A bayesian machine scientist
to aid in the solution of challenging scientific problems,” Science
Advances, vol. 6, no. 5, 2020, iD: TN-scopus2-s2.0-85078995313.

[8] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted l1 minimization,” arXiv:0711.1612 math, stat], 2007, 14.
[Online]. Available: http://arxiv.org/abs/0711.1612

[9] E. Candes, J. Romberg, and T. Tao, “Stable signal recovery
from incomplete and inaccurate measurements,” arXiv:math/0503066,
2005, 15. [Online]. Available: http://arxiv.org/abs/math/0503066

[10] M. E. Tipping, “Sparse bayesian learning and the relevance vector
machine,” Journal of Machine Learning Research, vol. 1, no. 3, pp.
211–244, 2001, iD: TN-scopus2-s2.0-0001224048.

[11] D. J. C. MacKay, Information theory, inference, and learning algo-
rithms. Cambridge, UK ; New York: Cambridge University Press,
2003.

[12] D. Wipf and S. Nagarajan, “Iterative reweighted `1 and `2 methods for
finding sparse solutions,” IEEE Journal of Selected Topics in Signal
Processing, vol. 4, no. 2, pp. 317–329, 2010, iD: TN-ieee-s5419071.

[13] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven
discovery of partial differential equations,” Science Advances, vol. 3,
no. 4, 2017.

[14] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 113, no. 15, p. 3932, 2016.

[15] S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and
S. Aigrain, “Gaussian processes for time-series modelling,” Philosoph-
ical Transactions of the Royal Society A, vol. 371, no. 1984, 2013, iD:
TN-royal-society-publishing10.1098/rsta.2011.0550.

[16] D. K. Duvenaud, “Automatic model construction with gaussian pro-
cesses,” Ph.D. dissertation, June 2014.

[17] D. J. C. MacKay, “Bayesian methods for adaptive models,” Ph.D.
dissertation, 1992, 14. [Online]. Available: https://resolver.caltech.
edu/CaltechETD:etd-01042007-131447

[18] C. E. R. author and C. E. Rasmussen, “Gaussian processes for machine
learning,” 2005, iD: dedupmrg2334821369; Includes bibliographical
references and index.; Includes bibliographical references (pages 223-
238) and indexes.; Includes bibliographical references and indexes.

[19] . Papoulis, Athanasios and .-. Papoulis, Athanasios, Probability, ran-
dom variables, and stochastic processes, 4th ed., ser. McGraw-Hill
series in electrical and computer engineering. Boston ; London:
McGraw-Hill, 2002.

[20] D. P. Wipf and S. S. Nagarajan, A New View of Automatic
Relevance Determination, ser. Advances in Neural Information
Processing Systems 20. Curran Associates, Inc, 2008, pp.
1625–1632, 14. [Online]. Available: http://papers.nips.cc/paper/
3372-a-new-view-of-automatic-relevance-determination.pdf

[21] R. M. Neal, Bayesian learning for neural networks, ser. Lecture notes
in statistics ; 118. New York ; London: Springer-Verlag, 1996.

[22] D. P. Wipf, B. D. Rao, and S. Nagarajan, “Latent variable bayesian
models for promoting sparsity,” IEEE Transactions on Information
Theory, vol. 57, no. 9, pp. 6236–6255, 2011, iD: TN-ieee-s6006623.

[23] A. J. Lotka, “Analytical Note on Certain Rhythmic Relations in
Organic Systems,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 6, no. 7, pp. 410–415, Jul.

1920. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC1084562/

[24] V. Volterra, “Fluctuations in the Abundance of a Species considered
Mathematically1,” Nature, vol. 118, no. 2972, pp. 558–560, Oct.
1926. [Online]. Available: http://www.nature.com/articles/118558a0

[25] O. Rössler, “An equation for continuous chaos,” Physics Letters
A, vol. 57, no. 5, pp. 397–398, Jul. 1976. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/0375960176901018

[26] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for
compressive sensing,” in 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2008, pp. 3869–3872, iD:
1.

[27] E. N. Lorenz, “Deterministic Nonperiodic Flow,” Journal of the
Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, Mar. 1963.
[Online]. Available: https://journals.ametsoc.org/jas/article/20/2/130/
16956/Deterministic-Nonperiodic-Flow

[28] D. Del Vecchio and R. M. Murray, Biomolecular feedback systems.
Princeton: Princeton University Press, 2015.

[29] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Inferring
Biological Networks by Sparse Identification of Nonlinear Dynamics,”
IEEE Transactions on Molecular, Biological and Multi-Scale Commu-
nications, vol. 2, no. 1, pp. 52–63, Jun. 2016.

[30] I. Knowles and R. J. Renka, “Methods for numerical differentiation
of noisy data,” 2014.

APPENDIX

All the code used in the report can be found and down-
loaded from https://github.com/zoltuz/ode composer py a
python package designed for the identification of ODE
systems.The results were obtained using Python 3.7 and
making use of the following libraries:
• sci-kit learn - 0.23.0
• scipy - 1.4.1
• sympy - 1.5.1
• cvxpy - 1.1.1
• numpy - 1.17.4
• matplotlib - 3.2.1
All simulations and results were run in a 64-bit Windows

machine with 12GB of 2600MHz RAM and an Intel Core
i5-4670K 3.5GHz processor.

NOMENCLATURE

α ∈ R Parameter in an ODE system
β ∈ R Parameter in an ODE system
δ ∈ R Parameter in an ODE system
ẏ ∈ Rn Derivative of the signal y
Ẏ ∈ Rp×n Derivative of Y
ε ∈ Rn White Gaussian noise
η ∈ R Parameter
γ ∈ Rn Variance of the prior over w
γ∗ ∈ Rn Optimal value of γ
γk ∈ Rn Value of γ in the k-th iteration
Λ ∈ R Complexity penalty parameter for SBL, depends on

the variance λ
λ ∈ Rn Variance vector of the White Gaussian noise
µ ∈ Rn Mean of Gaussian Process
w ∈ Rm Automatic Relevance determination vector; selects

the entries in Φ and assumed to be sparse
y ∈ Rn Signal or vector to be modelled with n data-points
yi ∈ R i-th entry of vector y
ν ∈ R Parameter in an ODE system
Φ ∈ Rn×m Dictionary of non-linearities with m entries
ρ ∈ R Parameter in an ODE system
σ ∈ R Parameter
Σ−1y ∈ Rn×n Moore-Penrose pseudo-inverse of the matrix

Σy
A ∈ Rn×n General linear transformation matrix
K ∈ Rn×n Covariance of the Gaussian Process
Ki,j ∈ R i-th entry of the j-th column of K
Ki ∈ Rn i-th row of the Matrix K
Kj ∈ Rn i-th column of the Matrix K
m ∈ R Number of non-linearities in Φ
n ∈ R Number of data-points
x Variable in an ODE system
Y ∈ Rp×n Matrix of p observable states and n data-points
y Variable in an ODE system
z Variable in an ODE system
SNR Signal to Noise Ratio SNR = 10log(

Powersignal

Powernoise
)

